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Diffusion in materials with variable temperature
Part Il Two- and three-dimensional problems

J. R. FRADE

Departamento de Engenharia Cerdmica e do Vidro, Universidade de Aveiro,

3800 Aveiro, Portugal

The analogy between the differential equations which describe diffusion with constant
diffusivity, time-dependent diffusivity, and temperature-dependent diffusivity in
non-isothermal conditions is now extended to obtain solutions for two- and
three-dimensional problems. The solutions for non-isothermal conditions are derived by
substitution of independent variables, and correspond to a change in scale of radial
distances on varying the cooling or heating rate. The dependence of the amount transferred
across the interface on the rate of change in temperature is also described, and the relative
effects can be predicted by selecting suitable combinations of experimental conditions. This
conclusion can be extended to diffusion-controlled growth or dissolution of particles.

1. Introduction

The method used to derive solutions for diffusion with
variable temperature and temperature dependent dif-
fusivity was outlined in Part I [1] and demonstrated
for one-dimensional problems. However, solutions for
that particular geometry fail to describe many prob-
lems in science and technology, such as materials
processing. In fact, assuming nearly spherical or cylin-
drical symmetry is often closer to real conditions than
assuming plane interfaces. Typical examples might be
diffusion in small particles, and diffusion-controlled
impurity segregation or coalescence of vacancies at
grain boundaries in polycrystalline materials. Models
for particle growth or dissolution [2-8], and powder
reactions [9,10] are also often based on assuming
spherical or cylindrical particles. However, those
models were derived for isothermal conditions with
constant diffusivity, and this assumption usually fails
for variable temperature.

Models for variable temperature are thus needed for
interpreting many useful experiments, a typical
example of this being models for non-isothermal sin-
tering [11-13], and models for interpreting other re-
sults obtained by thermal analysis [14,15]. This is
now extended for other cases when spherical or cylin-
drical symmetry can be assumed. The method used to
obtain solutions for variable temperature is based
on transformation of independent variables yielding
analogies between the differential equations which
describe this case and the differential equations for
isothermal processes. This method is used to obtain
solutions for the amount, M, of material transferred
through a stationary boundary, and to evaluate the
role of the rate of change in temperature, o. In addi-
tion, the method is extended for cases when bound-
aries move at a rate which is controlled by diffusion, as
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expected for the behaviour of particles. A model for
interpreting growth or dissolution of spherical par-
ticles in non-isothermal conditions confirms this con-
clusion [16], and the method can be extended for
describing the behaviour of cylindrical particles. The
kinetics of solid-state reactions in non-isothermal con-
ditions will be addressed separately.

This work also demonstrates the possibility of pre-
dicting whether a given process is controlled by diffu-
sion or reaction, even for cases when the exact solu-
tions cannot be computed. This test can be applied on
plotting Ma!'/? (or ao'/?) versus temperature, for two
or more experiments carried out at different rates of
change in temperature, and checking if this yields
a single dependence.

2. Two- or three-dimensional diffusion with
stationary boundary

The method of finding analogies between diffusion in
isothermal and non-isothermal conditions is similar to
that outlined in Part I [1] for one-dimensional diffu-
sion. The basic material balance for two- or three-
dimensional diffusion with constant diffusivity reduces
to [17]

aC/ot = DA*C/ar* + (n/r)DEC/I) (1)

where C is concentration, r is radial distance, D is
diffusivity, t is time, and n = 1 for the two-dimensional
case, or n = 2 for the three-dimensional case. Equa-
tion 1 can be rewritten

aC/ay = 02C/or? + (n/r)(dC/r) )
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TABLE 1 Solutions for concentration profiles and amount, M, transferred by diffusion internally bounded by a sphere of radius a, with
uniform initial concentration C;, constant surface concentration, C,, and the following cases: case A, constant diffusivity, D; case B,
time-dependent D(t); case C, variable temperature with temperature-dependent D(T')

(C—CAC, = C)

(0C/0r), or (0C/OwW),,,

M/(Ci — C.)

Case A (a/r)erfc{(r — a)/[2(D1)"/*]} (C; — Cy)[a™ ! + (=Dr)~ 7] Dt/a + 2(Dt/m)'/?

Case B (a/r)erfe{(r — a)/(2y*"?)] (Ci = C)la™" +(ny)~'7] y/a +2(y/m)'?

Case C (wo/werfc[(w — w,)/(2y*!1?)] (Ci= CHIw™" + (my*) 1] y*/(ao) + 2[y*/(am)]'?
where 2.1. Diffusion in a medium internally

t
v = [ pear G
0
This is an alternative variable for describing the de-
pendence on time. Equations 2 and 3 also apply both
to time dependent diffusivity D(¢), and constant diffus-
ivity, in which case the independent variable reduces

to y = Dt.

Different transformations are needed for non-
isothermal conditions. However, when temperature
T varies linearly with time one can use transforma-
tions identical to those proposed in Part I [1], which
correspond to introducing

Vo= HTD(T/)dT/ )

T;

and

w = rall? %)

where o = |dT/dt| is the absolute value of the rate of
change in temperature. Note also that diffusivity is
often strongly dependent on temperature, and on us-
ing these independent variables w and y*, Equation 1
should be rewritten

0C/oy* = OC/ow* + (n/w)@C/ow)  (6)

Formulae for evaluating the values of y* were pre-
sented in Part I, [1] for the typical case when diffus-
ivity varies at D(T) = D,exp[ —Ey/(RT)], where
E, is the activation energy, and R is the perfect gas
constant. These formulae reduce to

V¥ = Do(Eq/R)(O) — 1(0;)] (7)
where

® = TRJ/E, (8)

is a dimensionless temperature. An useful set of dis-
crete pairs @;; I1(®;) was also presented in Table I of
Part I [1].

Equations 2 and 6 are identical except for the actual
independent variables. Analogy thus corresponds to
substitution of y or y* for Dt, and ra'/? for radial
distance r. When the boundary is located at radius a,
this must also be replaced by aal/?, to adjust the scale
for non-isothermal conditions. This is true even for
cases when the process corresponds to a moving
boundary, as found for diffusion-controlled growth of
particles [16].

3558

bounded by a sphere

The solutions for plane interfaces can also be used for
curved surfaces when the radius of curvature is much
larger than the boundary-layer thickness. For a nearly
flat surface, and in isothermal conditions, with nearly
constant diffusivity, the boundary-layer thickness is
8 = (nD1)!/2, (see Part I [1]), and models for plane
surfaces can be used for radius of curvature obeying
the condition a > (nDt)'/?, or Dt < a*/r. Similar cri-
teria are readily obtained for other cases, by replacing
the independent variables. For time-dependent D(t),
the required condition is thus y(t)<«a?/r, and for vari-
able temperature

vi(T) < a’o/n )

The calculations of y* are still computed as described
by Equation 4, or Equation 7 for the usual dependence
D =D,exp[ —Eq/(RT)].

Equations 1 or 2 and 6 are identical, except for the
meaning of the independent variables. One can thus
take advantage of solutions originally derived for con-
stant diffusivity [17], by substitution of independent
variables. For example, concentration profiles are pre-
sented in Table I for the following cases: case A — con-
stant diffusivity; case B — time-dependent diffusivity;
case C — variable temperature with temperature-de-
pendent diffusivity. The solution for non-isothermal
conditions thus reduces to

(C— CHIC, — C) = (wo/w)erfc[(w — wo)/(2y*1/?)]
(10)

where w = ral’2, w, = aol/?,C; is the initial spatially
uniform concentration, and C(a,t) = C, is a constant
interfacial concentration. The concentration gradient
for every case is easily obtained by differentiating
C(r,t),C(r,y) or C(w, y*) with respect to distance r or
w (see Table I), and these solutions can be used to
derive solutions for the amount transferred across the
surface, using the method outlined in Appendix A. For
non-isothermal conditions this yields

M = (Ci— C){y*/(ax) + 2[y*!?/(am)]"2} (1)

Equation 11 still retains the effect of actual size. How-
ever, the effects of varying simultaneously the rate of
change in temperature, o, and radius, a, cancel by
maintaining aa'’? constant, and for identical initial
and final temperatures. One can thus assess whether
processes are diffusion-controlled or reaction-control-
led by plotting Ma!/? versus temperature for different
rates of change in temperature, with identical initial



TABLE II Solutions for concentration profiles and amount, M, transferred by diffusion in a sphere, with uniform initial concentration, C;,
constant surface concentration, C,, and the following: case A, constant diffusivity, D; case B, time-dependent D(t); case C, variable

temperature with temperature-dependent D(T')

(C—CH/I(Ca—Cy) Case A
Case B

Case C

M/M ., Case A
Case B

Case C

1+ 2a/r i (—1)™(mn)~ 'sin(nnr/a)exp[ — Dt(nn/a)*]
1+ 2a/r i (—1)"(nn)~ tsin(nnr/a)exp[ —y(rnn/a)*]
1+ 2a/r i (=1D)™(mn)~ 'sin(nnr/a)exp[ — y*(T )(rn)?/(a*o)]

1

1-6 i (mn)~ 2 exp[ —(nn/a)? Dt]

0

1—-6 Z (mn)~ 2 exp[ —(nn/a)? y]

0

1 =63 (mn) "2 exp[ —y*[(mn)*/(a*)]}

1

temperature and identical values of aa!/?. Several ex-
periments should thus give a single dependence. This
test can be used also for a temperature-dependent
interfacial concentration, C,(T'), and for cases when
obtaining the solutions for concentration gradients is
cumbersome, or not feasible due to unknown temper-
ature dependence of the relevant parameters such as
D(T) or C,(T). Note that maintaining a constant
value of aa'/?, and identical initial temperature for
every experiment, are essential for this test.

2.2. Diffusion in a sphere

Useful solutions for diffusion in a sphere with constant
diffusivity can be found in textbooks [17], and the
analogy between Equations 1,2 and 6 can again be
taken advantage of to obtain solutions for time-de-
pendent diffusivity, and also for variable temperature
with D(T), as shown in Table II. For uniform initial
concentration, constant surface concentration, tem-
perature-dependent diffusivity, and temperature vary-
ing with time at a rate o, the relevant solutions become

% 1+ (2a/r) i (—=1)"(rn)~ ! sin(nmr/a)
xexp[ —y*(T)(nn)*/(a*x)] (12)
M/M, = 1—(6/1:2)§:n_2

x exp[ —y*(T)(mn)*/(a’e)] (13)

where M, is the maximum amount of material for
y* = co. These solutions also demonstrate that the
role of curvature can be accounted for by aa'/? when
temperature varies linearly with time. Note that the
rate of mass transfer drops rapidly for y*(T) > 1.
Truncation can be used to obtain simpler solutions
for relatively long times. For example, changes in
concentration at the centre of the sphere reduce to

(C = CI/(C; = Co) = (2/m)(a/r)sin (nr/a)

xexp[ —o” H(m/a)?y*(T)] (14)

A simple solution can also be used for describing the
material gained by the sphere for long times, as found
for the case when diffusivity is constant [17]. The
equivalent solution for non-isothermal conditions
with temperature-dependent D(T') becomes

M/M,, =~ 1—(6/n*)exp[—(m/a)*o'y*(T)] (15)

Equations 14 and 15 are nearly true for
y*/(aa?) > 0.5, in non-isothermal conditions, or the
original condition Dt/a® > 0.5, for isothermal condi-
tions and constant D.

The solution for a time-dependent interfacial con-
centration and constant diffusivity is also available in
the literature [17], for the case when the initial con-
centration is zero. That solution can be extended for
non-zero C; by making C — C; the dependent variable
and introducing C,(t) — C;, rather than C,(t). Chang-
ing the independent variables (y* for Dt, w = ra*/? for
r, and w, = aa'/? for a), was then the basis for obtain-
ing the corresponding solution for non-isothermal
conditions, when both diffusivity and interfacial con-
centration are likely to change

C—C; = —2ar) ! i(—l)"nnsin(nnr/a)

*

* J y exp[(nn)*(y*' — y*)/(a*a)]

X ([C.(y*') = Ci) Jdy* (16)

Equation 16 is a confirmation that the role of curva-
ture can be accounted for by w, = aa!’?, (and ral/?),
as found for constant boundary conditions, and the
other relevant variable is y*, or temperature. Note
that y*(T) is a function of temperature only, and the
temperature dependent interfacial concentration is ac-
counted for by C,[y*(T)].

Equation 16 was solved numerically, using
a method outlined in Appendix B, and some predic-
tions are shown in Fig. 1, for the case when surface
concentration is initially C; and then drops with
decreasing temperature as C,(T) = C;exp[(E./R)
(T ' — T~ Y]. Note that the trends for diffusion in
a sphere are similar to those for a plane sheet (see

3559



08

0.6 -

c/c

0.2 [

0 1 1 1 1
0 0.2 0.4 0.6 0.8 1

r/a

Figure 1 Concentration profiles developed on cooling from initial
temperature T; = 1273 K to room temperature (298 K), in a sphere
with uniform initial concentration, C;, and temperature-dependent
surface concentration C, = Ciexp[(E./R)(T; ' — T~ ')], with
E. = 50,100,200 kJ mol ! (shown in the figure). Diffusivity varies
as D(T) = D,exp[ —E4/(RT)], with Eq = 100 kJmol~!. The re-
maining parameters obey the condition D;T;(a’a) =2, with
D; = D(T)).

900 1000 1100 1200 1300
T(K)

Figure 2 Changes of solute content in a sphere on cooling from
initial temperature T; = 1273 K, with uniform initial concentration,
C;, temperature-dependent surface concentration, C, = C;exp
[(E./R)(T; ' — T~")], with E, = 100,200, 500 kJ mol ~! (shown in
the figure), and diffusivity D(T) = D,exp[ —E4/(RT)], with
E4 = 100 kJmol~'. The remaining parameters obey the condition
D;T;/(a*a) = 5, with D; = D(T;).

Part I [1]). Other examples were used to compute
changes in total solute content in the sphere (Fig. 2).

2.3. Diffusion in a cylinder

The main conclusions drawn for the role of curvature
and rate of change in temperature on diffusion in
a sphere also apply to diffusion in a cylinder. For
example, the solutions for spatially uniform initial
concentration, C;, and constant surface concentration,
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C,, were obtained by analogy with solutions reported
for isothermal conditions with constant diffusivity
[17], on changing the dependence C(r,t) to C(w,y™*).
Solutions for concentration profiles and amount of
material gained by the cylinder are presented in Table
II1, including the following solutions for variable tem-
perature

(C—C)ICa—C) = 1—2Y exp[ —b2y*(T)]

Jo(baral?)[byac' 2 Jy (byaa'?)] 71 (17)

MM, =143 (byas'®) 2 exp[ —(b2)y*(T)]

(18)

where J,(x) is the Bessel function of order zero, J;(x) is
the Bessel function of first order, and the value b, is
obtained on solving J,(b,aa'/?) = 0.

The parameters b, have dimensions identical to
(aat’?)~1, and one can thus rewrite Equations 17 and
18 in terms of the alternative roots ¢, = b,aa'’? of the
Bessel function of zero order (¢; = 2.40, ¢, = 5.52,
c3 = 8.65, ...). Therefore, a truncated first-order ap-
proximation for the amount of material transferred at
relatively long times reduces to

M/M,, =1—0.692exp[ —5.78y*(T)/(a®®)] (19)

This should hold for Dt/a® > 0.5, or y*/(aa!/?) > 0.5,
as previously found for diffusion in a plane sheet or in
spheres.

3. Solutions for diffusion-controlled

growth or dissolution of particles
Analogy also applies to the basic differential equations
which describe diffusion-controlled behaviour of par-
ticles for constant diffusivity, time-dependent D(t), or
temperature-dependent D(T') with variable temper-
ature. The basic equations for isothermal conditions
can be written

2
Lo — elapr(dasdn] 5 (20
y or or

where € is a measure of the relative change in volume.
Equation 20 describes the cases when diffusivity is
nearly constant [2,8], by making y = Dt, or time-
dependent D(t), in which case y is described by Equa-
tion 3. In addition, the rate of change in particle size
can be described by

da/dy = —[C(1 —v,C)]1 ' (@C/dr),  (21)

where v, C, is the solute volume fraction at the inter-
face. The corresponding differential equations for vari-
able temperature have also been reported for spherical
particles [16], by suitable changes of the independent
variables. Extending this method for cylindrical
oC 02C oC
BF = ot T L) — elno /@y
(22)

dwo/dy* = —[C(1 —vaC)] '(dC/dw),, (23)



TABLE III Solutions for concentration profiles and amount of material gained by a cylinder with uniform initial concentration, C;,
constant surface concentration, C,, and: case A, isothermal conditions with constant D; case B, isothermal conditions and time-dependent
D(t); case C, variable temperature with D(T). The values of b, correspond to solutions of J,(b,a) =0 for isothermal conditions, or

Jy(bpan’?) = 0 for non-isothermal conditions

(C—=C)/(Ca—Cy) Case A
Case B

Case C

M/M ., Case A
Case B

Case C

1 =23 expl —b2Di1Ju(bur) /[haad (bra)]
1

1= 2 expl —b2y1Ju(bar) [ oy (bra)]
1

1-2 iexp[*bﬁy*(T)]Jo(b“rotl/z)/[b“aal/zJ, (byaa'’?)]
1

e

1—4 Z (bna)~2exp[ —(b2)Dt]

0

1 =4 (bya) 2exp[ —(b2)y]

0

1—47% (byao'?)"exp[ —(b7)y*(T)]

1

TABLE IV Solutions for diffusion-controlled growth or dissolution of spheres, for the following cases: case A, diffusivity is constant; case B,
diffusivity is time-dependent; case C, diffusivity is temperature-dependent and T varies at a rate |dT/dt| = o

Case A/References

Case B Case C

Growth of sphere or cylinder a=2B(Dn'* [2,6]

from zero

Growth of sphere or cylinder a* ~ a2 + 4p*(D1) [6,8]

from finite size

Quasi steady-state behaviour a?> =a? +2¢Dt [18]

of a sphere
Quasi stationary behaviour
of a sphere [19]

Generic behaviour of a sphere aja, versus Dt/ad [6,7]

or a cylinder

da/dt = ¢D[a ' + (nDt)” /2]

a=2Byl? aoll? = 2Byl

a? ~ a2 + 4p2y a*ox alo + 4p2y*

a? = a2 + 2¢y a*o = alo +2¢y*

d(aa!?)/dy* =
dlaa!?)™1 4 (my*)~12]

aja, versus y*/(ago)

da/dy =
dLa™! +(ny)~12]

aja, versus y/a?

The analogy between Equations 20 and 22, and
Equations 21 and 23 shows that solutions reported for
isothermal conditions can still be useful to obtain the
corresponding solutions for variable temperature, by
suitable substitutions of independent variables
(w = ral/? for r,w, = aa'’® for a, and y* for Dt). The
values of y* are readily computed for the usual ex-
ponential law D = D exp[ —E4/(RT)] by using
Equation 7 and data shown in Table I of Part I [1].

Several solutions for diffusion-controlled growth or
dissolution of spherical or cylindrical particles are
shown in Table 1V, including the original solutions for
constant diffusivity. For example, the solution for
growth from zero in isothermal conditions, with con-
stant diffusivity and constant interfacial concentration
reduces to a = 2B(Dt)/? [2]. Formulae required for
computing the growth constant B, and solutions for
wide ranges of conditions have been reported else-
where, both for spheres [2,6] and cylinders [8]. Sub-
stitution of aa'/? for radius a, and y* for Dt yields
the solution for growth from zero, with variable
temperature.

ag'? = 2py*' (24)

Note also that Frade and Cable [16] have shown that
the growth constant, B, is the same as for isothermal

processes, as expected, and an identical conclusion
holds for cylinders.

Growth from finite size or dissolution require solu-
tions for transient regimes, which have been computed
for isothermal conditions with constant diffusivity
[3-8]. The corresponding solutions for variable tem-
perature are then easily obtained by replacing a by
ao'’?, and Dt by y*. For example, a®> — a2 = 4p>Dt
nearly describes growth of spheres [6] or cylinders [ 8]
from finite size when diffusivity is constant, and substi-
tution of y* for Dt and aa'/? for size a yields the
corresponding solution for variable temperature

a’o—aZoa = 4p%y* (25)

Other solutions usually correspond to discrete
data, or graphs of a/a, versus Dt/aZ, and analogy
shows that these data can also be read as
[aa’?/(a,0'/?)] = (a/a,) versus y*/(aZa) for the case
when temperature is variable.

Some approximate solutions also apply to growth
or dissolution of spheres when the driving force is
relatively low. For example, quasi steady-state solu-
tions [18] reduce to a? — a2 = 2¢Dt, for constant
diffusivity, ¢ being the driving force, and the following
solution is easily obtained for variable tempera-
ture on replacing a®> by a’a, a2 by ala, and Dt
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by y*(T)
2¢y* (26)

A quasi stationary model has also been proposed, and
reduces to da/dt = D$[a~! + (Dt)" /2], for con-
stant diffusivity [19]. However, this equation does not
represent a significant improvement relative to quasi
steady-state solutions. In fact, the quasi stationary
model still requires numerical integration, and it also
fails for moderate or large ¢.

The method of replacing aa'/? for radius a, and
y*(T) for Dt might be useful also to have some insight
about the effect of the rate of change in temperature,
when the interfacial concentration varies with temper-
ature, C,(T). For example, the quasi steady-state solu-
tions derived by Frade and Cable [16] reduce to

a*o —ala =

T

uwZ—d)==J D(T)(C,, — C,(T))

x[Ci— (1 —&)Cy(T)]™1dT  (27)

where C, is the initial bulk concentration, C; is the
concentration in the sphere, and &€ measures the rela-
tive volume change. Note that the right-hand side of
Equation 27 still depends on temperature only.

4. Conclusion
Suitable transformation of variables can be used to
demonstrate the analogy between the differential
equations which describe diffusion-controlled pro-
cesses in isothermal conditions and for variable tem-
perature. This has been extended for conditions nearly
described by spherical or cylindrical symmetry.
Diffusion in spheres or cylinders is dependent on
their size, which effects both the concentration profiles
and amount M gained or lost. However, the effect of
changing the radius a can be compensated by adjust-
ing the rate of change in temperature, o, and maintain-
ing a constant value of aa'/?. For example, the de-
pendence of Ma'/? should be unique for experiments
carried out by cooling from a given initial temperature
to room temperature at different rates, if the radius is
also adjusted to fulfil the conditions aa!'/?> = constant.
Identical conclusions can be drawn for diffusion in
a very large medium internally bounded by a sphere.
The initial size, a,, also affects the diffusion-control-
led behaviour of particles, and is accounted for by
a,0t’?, for the case of solutions for non-isothermal
conditions.

Appendix A. Solutions for the amount
transferred in non-
isothermal conditions

The basis for obtaining these solutions is similar to the

method outlined for one-dimensional diffusion (see

Appendix A, Part I [1]). Therefore, the rate of transfer

dM/dt = D(0C/0r), is rearranged as a function of tem-

perature (dt = dT /o)
dM = o '2(@C/ow),, D(T)dT (A1)
(6C/ow),,, varies

where with y*(T) and also
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w, = a2, which corresponds to the effect of curva-
ture. Integration of Equation A1l thus yields

M = o Y2M*[T,(an'?)] (A2)

where

T
M*[T,(aax*?)] = j (0C/ow),, ,D(T")dT" (A3)
T;
varies with temperature and w, = aa'/2. For example,
the solution for constant surface concentration is eas-
ily obtained by taking into account the concentration

gradient shown in Table I, and reduces to

M = (Ci— Co){y*/(av) + 2[y*/am) ]2} (A4)

Appendix B

A large number of terms is also needed to solve Equa-
tion 16 because these terms decay slowly with increas-
ing n; this might be responsible for excessive comput-
ing time and also significant rounding-off errors, as
pointed out for plane sheet (see Part I). A transforma-
tion of Equation 16 must thus be performed to avoid
these limitations, which yields

C—C; = 2) (—D)"[a/(rmn)]sin(nnr/a)

-8

X [F(00,8) = F(n,&)] — F(00,£)S2(0)
(A5)

where
¢ = y*n?/(a’a) (A6)

and

2

n“¢
Fnd) = | ew(e — O - Clag
(A7)

N
Sy(N) = 2> {(—1)"[a/(nnr)]~ ' sin(nnr/a) (A8)
1
This transformation yields terms F(n, &) which con-
verge rapidly to F(oo,&), and the differences
F(n,&) — F(oo, &) thus vanish rapidly, avoiding the
complications related to computing a very large num-
ber of terms. In addition S,(o0) = 1.

Additional details concerning the calculations of
T;;yi pairs, and other features of the numerical
method, are identical to those reported for plane sheet
(Part I [1]).
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